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Abstract Recently, the following Discrimination-Aware Classification Problem was
introduced: Suppose we are given training data that exhibit unlawful discrimination; e.g.,
toward sensitive attributes such as gender or ethnicity. The task is to learn a classifier that
optimizes accuracy, but does not have this discrimination in its predictions on test data.
This problem is relevant in many settings, such as when the data are generated by a biased
decision process or when the sensitive attribute serves as a proxy for unobserved features.
In this paper, we concentrate on the case with only one binary sensitive attribute and a
two-class classification problem. We first study the theoretically optimal trade-off between
accuracy and non-discrimination for pure classifiers. Then, we look at algorithmic solutions
that preprocess the data to remove discrimination before a classifier is learned. We survey and
extend our existing data preprocessing techniques, being suppression of the sensitive attri-
bute, massaging the dataset by changing class labels, and reweighing or resampling the data
to remove discrimination without relabeling instances. These preprocessing techniques have
been implemented in a modified version of Weka and we present the results of experiments
on real-life data.

Keywords Classification - Preprocessing - Discrimination-aware data mining
1 Introduction

Classifier construction is one of the most researched topics within the data mining and
machine learning communities. Literally thousands of algorithms have been proposed.

This paper is an extended version of the papers [3,13,14].
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The quality of the learned models, however, depends critically on the quality of the training
data. No matter which classifier inducer is applied, if the training data are incorrect, poor
models will result. In this paper we study cases in which the input data are discriminatory
and we want to learn a discrimination-free classifier for future classification. In Sect. 2,
we sketch three realistic scenarios in which the discrimination-aware classification problem
occurs naturally and we link to relevant anti-discrimination legislation.

Discrimination-aware classification originally stems from [13,14] and was further
explored in [3]. The input of the discrimination-aware classification problem is a labeled
dataset and one or more sensitive attributes. The output is a classifier to predict the label that
should not correlate with the sensitive attribute. The quality of the classifier is measured by
its accuracy and discrimination; the more accurate, the better, and the less discriminatory, the
better. In the previous papers, and in this one, we restrict ourselves to one binary sensitive
attribute S with domain {b, w} and a binary classification problem with target attribute Class
with domain {—, +}. “+” is the desirable class for the data subjects and the objects satisfying
S = b and S = w represent, respectively, the deprived and the favored community. The
discrimination of a classifier C is defined as

discs—p == P(C(X)=+]X(S) =w) — P(C(X) =+ X(S) =b) ,

where X is a random unlabeled data object. A discrimination larger than O reflects that a tuple
for which S is w has a higher chance of being assigned the positive label by the classifier
C than one where S is b. Our choice for this discrimination measure is further motivated in
Sect. 3. Similar as for accuracy, the discrimination of a classifier can be estimated using an
independent test-set.

The problem of classification without discrimination w.r.t. a sensitive attribute S is in fact
a multi-objective optimization problem; on the one hand, the more discrimination we allow
for, the higher accuracy we can obtain while on the other hand, in general we can trade in
accuracy in order to reduce the discrimination. Before going into algorithmic solutions, we
first present a theoretical study of this trade-off in Sect. 4. After that, we discuss algorithmic
solutions.

The following four methods for incorporating non-discrimination constraints into the
classifier construction process are discussed in Sect. 5. All four methods are based on
preprocessing the dataset after which the normal classification tools can be used to learn
a classifier.

1. Suppression. We find the attributes that correlate most with the sensitive attribute S. To
reduce the discrimination between the class labels and the attribute S, we remove S and
these most correlated attributes. This simple and straightforward approach will serve as
the baseline in our experiments.

2. Massaging the dataset. We change the labels of some objects in the dataset in order
to remove the discrimination from the input data. A good selection of which labels to
change is essential. To select the best candidates for relabeling, a ranker is used. This
method is an extension of the method proposed in [13] where a Naive Bayesian classi-
fier was used for both the ranking and learning. In this paper we will consider arbitrary
combinations of ranker and learner.

3. Reweighing. Instead of changing the labels, the tuples in the training dataset are assigned
weights. As we will show, by carefully choosing the weights, the training dataset can be
made discrimination-free w.r.t. S without having to change any of the labels. The weights
on the tuples can be used directly in any method based on frequency counts. This method
was first proposed in [3].
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4. Sampling. For those methods that cannot directly work with weights, the related
Sampling method can be used instead. We calculate sample sizes for the 4 combina-
tions of S- and Class-values that would make the dataset discrimination-free. Then, we
apply stratified sampling on the four groups; two of the groups will be under-sampled
and two over-sampled. We introduce two techniques to select which objects to duplicate,
and which to remove. In the first scheme, Uniform Sampling (US), we apply uniform
sampling with replacement. In this scheme, every object has a uniform probability to
be duplicated to increase the size or to be skipped to decrease the size of a group. In
the second scheme, Preferential Sampling (PS), borderline objects get high priority for
being duplicated or being skipped. A ranker is used to decide which objects are at the
border.

Section 6 contains the results of an extensive empirical study. We present the results
supporting the following claims:

(i) Removing the attribute S from the dataset does not always result in the removal of the
discrimination. This we call the redlining effect [13].

(i1) Especially the Massaging and PS techniques lead to an effective decrease in discrim-
ination with a minimal loss in accuracy.

We stress that in all experiments, the preprocessing techniques have only been applied to the
training data. When evaluating the classifiers always, unmodified, independent test data were
used.

2 Motivation

Discrimination refers to the unfair and unequal treatment of individuals of a certain group
based solely on their affiliation to that particular group, category, or class. Such discrimina-
tory attitude deprives the members of one group from the benefits and opportunities which are
accessible to other groups. Different forms of discrimination in employment, income, edu-
cation, finance, and in many other social activities may be based on age, gender, skin color,
religion, race, language, culture, marital status, economic condition, etc. Such discriminatory
practices are usually fueled by stereotypes, an exaggerated or distorted belief about a group.
Discrimination is often socially, ethically, and legally unacceptable and may lead to conflicts
among different groups.

2.1 Scenarios for discrimination-aware classification

We illustrate the need of discrimination-aware classification with three potential scenarios,
each one outlining a different situation in which we need to learn a non-discriminatory
classifier on biased data.

Scenario 1: historical discrimination [3]. Throughout the years, an employment bureau
recorded various parameters of job candidates. Based on these parameters, the company
wants to learn a model for partially automating the match making between a job and a
Jjob candidate. A match is labeled as successful if the company hires the applicant. It turns
out, however, that the historical data are biased; for higher board functions, Caucasian
males are systematically being favored. A model learned directly on this data will learn this
discriminatory behavior and apply it in future predictions. From an ethical and legal point
of view it is of course unacceptable that a model discriminating in this way is deployed.
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The historical labels only partially represent the task we want to learn; we only want to model
the part of the interest of companies in the applicants’ profiles that is not related to gender or
race. The discrimination-aware classification problem tackles this problem by imposing an
additional constraint on the models to be learned.

Scenario 2: multiple data sources. A survey is being conducted by a team of researchers;
each researchervisits a number of regionally co-located hospitals and enquires some patients.
The survey contains ambiguous questions (e.g., “Is the patient anxious?”, “Is the patient
suffering from delusions?”). Different enquirers will answer to these questions in different
ways. Generalizing directly from the training set consisting of all surveys without taking into
account these differences among the enquirers may easily result in misleading findings. For
example, if many surveys from hospitals in the Eindhoven area are supplied by an enquirer
who more quickly than the other enquirers diagnoses anxiety, faulty conclusions such as
“Patients in Eindhoven suffer from anxiety symptoms more often than other patients” may
emerge. In this case the discrimination-aware classification paradigm is used to avoid over-
fitting due to different data sources. Actually, here discrimination-aware classification can be
seen as a form of incorporating domain knowledge by making explicit the assumption that
we consider it to be more likely that differences between the data sources can be explained
by different labeling procedures rather than by differences in the underlying distributions.
Notice that similar situations exist when comparing scores for research papers among differ-
ent reviewers, or movie ratings of different people.

Scenario 3: sensitive attribute as a proxy. In some cases the discrimination in the input
data appears when the sensitive attribute serves as a proxy of features that are not present in
the dataset. Consider, e.g., the support someone may get financial support from his or her
family for repaying a mortgage loan when he or she looses his or her job. Such possibility
of support of the family or the absence thereof can critically influence the risk a prospec-
tive client represents for a bank. This highly useful parameter, however, is very difficult to
observe and quantify. Suppose now that, due to socio-cultural or economical reasons, the
possibility of family support correlates to the ethnicity of a person. In such a situation a
bank could be tempted to use the ethnicity attribute as a proxy for family support. Such
ethnic profiling makes perfect economical sense; it will lead to more accurate models for
risk, and thus, indirectly, higher gains for the bank. Nevertheless, it is ethically and legally
unacceptable. We quote Turner and Skidmore [27] on such cases: “If lenders think that
race is a reliable proxy for factors they cannot easily observe that affect credit risk, they
may have an economic incentive to discriminate against minorities. Thus, denying mort-
gage credit to a minority applicant on the basis of minorities on average—but not for the
individual in question—may be economically rational. But it is still discrimination, and it
is illegal.”

2.2 Anti-discrimination legislation

There are many anti-discrimination laws that prohibit discrimination in housing, employ-
ment, financing, insurance, wages, etc. on the basis of race, color, national origin, religion,
sex, familial status, and disability. We discuss some of these laws here and show how they
relate to our problem statement:

The Australian Sex Discrimination Act 1984 [2] prohibits discrimination in work,
education, services, accommodation, land, clubs on the grounds of marital status, preg-
nancy or potential pregnancy, and family responsibilities. This act defines sexual harassment
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and other discriminatory practices on different grounds and declares them unlawful. This
law also prohibits indirect and unintentional discrimination: [...] a person [...] discrimi-
nates against another person [...] on the ground of the sex of the aggrieved person if, by
reason of: (a) the sex of the aggrieved person; (b) a characteristic that appertains gen-
erally to persons of the sex of the aggrieved person; or (c) a characteristic that is gen-
erally imputed to persons of the sex of the aggrieved person; the discriminator treats the
aggrieved person less favorably than, in circumstances that are the same or are not materi-
ally different, the discriminator treats or would treat a person of the opposite sex. It is the
responsibility of the accused party to prove that his/her intention was not to discriminate the
aggrieved party: the burden of proving that an act does not constitute discrimination |[...]
lies on the person who did the act. Notice that under this law it is insufficient to remove
the sex attribute from a dataset before learning; also indirect discrimination on the basis of
a “characteristic that appertains generally to persons of the sex of the aggrieved person” is
disallowed.

The US Equal Pay Act 1963 [30] requires that men and women in the same workplace
be given equal pay for equal work. The jobs need not be identical, but they must be sub-
stantially equal. This law covers all forms of pay including salary, overtime pay, bonuses,
stock options, profit sharing and bonus plans, life insurance, vacation and holiday pay, clean-
ing or gasoline allowances, hotel accommodations, reimbursement for travel expenses, and
benefits. This act aimed at abolishing wage disparity based on sex. According to the US
Bureau of Labor Statistics, women’s salaries vis-a-vis men’s have risen dramatically since
the enactment of this equal pay act, from 62% of men’s earnings in 1970 to 80% in 2004 [6].
This real-world case illustrates a scenario where our historical data are discriminatory due
to a biased data generation process, but where classifiers learned on the data are forced to be
discrimination-free by law.

The US Equal Credit Opportunity Act 1974 [29] declares unlawful for any creditor
to discriminate against any applicant, with respect to any aspect of a credit transaction, on
the basis of race, color, religion, national origin, sex or marital status, or age [26]. This law
contains similar provisions as the previous two.

Another good example of the need for non-discriminative classifiers despite their poten-
tially lower accuracy is given by the European Council Directive 2004. Even though there
is clear historical evidence showing higher accident rates for male drivers in traffic, insur-
ance companies are no longer allowed to discriminate based on gender in many countries, as
explicated by the following recent ruling of the European Court of Justice [25]: The Euro-
pean Court of Justice decided on March 1, 2011 that, from December 21, 2012, it will no
longer be legal under EU law to charge women less for insurance than men. The verdict
means that different priced premiums for men and women drivers will now be considered to
be in breach of the EU’s anti-discrimination rules. This ruling is the implementation of the
European Council Directive 2004/113/EC of December 13, 2004.

All of the anti-discriminatory laws prohibit discriminatory practices in future. It means
that our discrimination-aware classification paradigm clearly applies to these situations. If we
are interested to apply classification techniques, and our available historical data contain dis-
crimination, it is simply illegal to use traditional classifiers without taking the discrimination
aspect into account due to these anti-discrimination laws. Because of the above mentioned
laws or due to ethical concerns, such use of existing classification techniques is unacceptable.
In such a situation our “classification without discrimination” paradigm applies: we want to
learn non-discriminatory classification models from biased historical data such that they gen-
erate accurate predictions for future decision making, yet do not discriminate with respect to
a given sensitive attribute.
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3 Problem statement: discrimination-aware classification

In this section we formally define and motivate a measure for the discrimination of a classifier,
and we introduce the Discrimination-Aware Classification Problem.

3.1 A measure for discrimination

We assume a set of attributes A = {Ay, ..., A,} and their respective domains dom(A;), i =
1,...,n have been given. A tuple X over the schema (Aj,..., A,) is an element of
dom(Ay) x ... x dom(A,). We denote the value of X for attribute A; by X (A;). A dataset
over the schema (Ay, ..., A,) is a finite set of such tuples and a labeled dataset is a finite
set of tuples over the schema (A1, ..., A,, Class). Throughout the paper we will assume
dom(Class) = {—, +}.

We assume that a special attribute S € A, called the sensitive attribute, and a special
value b € dom(S), called the deprived community have been given. The semantics of the
pair S, b is that it defines the discriminated community; for example, S could be “ethnicity”
and b “Black.” For reasons of simplicity we will assume that the domain of § is binary; i.e.,
dom(S) = {b, w}. Obviously, we can easily transform a dataset with multiple attribute values
for § into a binary one by replacing all values v € dom(S) \ {b} with a new dedicated value w.

We define the discrimination in the following way:

Definition 1 (Discrimination in labeled dataset): Given a labeled dataset D, an attribute S
and a value b € dom(S). The discrimination in D w.r.t. the group S = b, denoted discs—p (D),
is defined as:
{X € D| X(S) = w, X(Class) = +}|
{X € D] X(S)=wj
{X € D| X(S) = b, X(Class) = +}|
{X € D] X(S)=>b}|

That is, the difference of the probability of being in the positive class between the tuples X
in D having X (S) = w in D and those having X (S) = b. When clear from the context we
will omit S = b from the subscript.

discs—p(D) =

Definition 2 (Discrimination in a classifier’s predictions): Given an unlabeled dataset D,
an attribute S and a value b € dom(S). The discrimination of the classifier C w.r.t. the group
S = b in dataset D, denoted discs—p (D), is defined as:

XeD|XOS)=wCX)=
discsy(C. Dy i X EDIX®) =, €0 = +)]

(X e DIX(S) = w)|
X eD|X(S)=0b,CX) =4}
{X € D | X(S) = b}

That is, it is the difference in probability of being assigned the positive class by the classifier

between the tuples of D having X (S) = w and those having X (S§) = b. When clear from
the context we will omit S = b from the subscript, and D from the list of arguments.

Example 1 In Table 1, an example dataset is given. This dataset contains the Sex, Ethnicity,
and Highest Degree for 10 job applicants, the Job Type they applied for, and the outcome
of the selection procedure, Class. In this dataset, the discrimination w.r.t. the attribute Sex
and Class is: discgex— (D) = % — % = 40% . It means that in the dataset, a female is, in
absolute numbers, 40% less likely to be accepted for a job than a male.
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Table 1 Sample relation for the

job-application example Sex Ethnicity Highest degree Job type Class
M Native H. school Board +
M Native Univ. Board +
M Native H. school Board +
M Non-nat. H. school Healthcare +
M Non-nat. Univ. Healthcare -
F Non-nat. Univ. Education -
F Native H. school Education —
F Native None Healthcare +
F Non-nat. Univ. Education -
F Native H. school Board +

3.2 Motivation for the discrimination measure

Our way of measuring discrimination as the difference in positive class probability between
the two groups is based upon the following observation. Suppose we have data on employees
that applied for jobs and whether or not they got the job, and we want to test if there is
gender discrimination. Therefore, we consider the proportion of men that were hired versus
the proportion of women that were hired. A statistically significant difference in these pro-
portions would indicate discrimination. Let us indicate the true (resp. observed) proportion
of males that were hired as m (x), and the proportion for the females as m; (X2). Notice
that our discrimination measure equals X1 — x7. The standard statistical approach for testing
if females are discriminated would be to test if a one-sided null hypothesis kg : m> > m| can
be rejected. If the hypothesis gets rejected, the probability is high that there is discrimination.
Many different statistical tests could be used in this example; popular tests that apply are the
two-sample t test or the two-proportion Z test. Besides trying to refute the null hypothesis
ho, we could also go for a test of independence between the attributes gender and class with,
e.g., the x2 test or the G test. Unfortunately there is no single best test; depending on the
situation (usually the absence or presence of abundant data or proportions taking extreme
values) one test may be preferable over another. Here we can reasonably assume, since we are
working in a data mining context, that sufficient data are available. We also assume that none
of the proportions takes extreme values. As such, the choice of test is not that important, as
long as we restrict ourselves to one test. The test statistic that would be used for a two-sample
t test (assuming unknown and potentially different variances) is:

X1 — X2 _ dlscggndgr:f
- 9
i,4 (3.3
ny " oma ny "o

where s; and s, denote the empirical standard deviations of the two groups and n; and n,
their respective sizes. The statistical test, however, only tells us if there is discrimination, but
does not indicate the severity of discrimination. In this respect notice that the test statistic for
the hypothesis ko : m| — mo = dp is:

X1 —X2—dp
st
ni na
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As this example shows, it is not unreasonable to take the difference between proportions as a
measure for the severity of discrimination. Nevertheless, we want to emphasize that similar
arguments can be found for defining the discrimination as a ratio, or for using measures based
on mutual information gain between sensitive attribute and class or entropy-based measures
(such as the G test). In our work we made the choice for the difference in proportions because,
statistically speaking, it makes sense, and it has the advantage of having a clear and intuitive
meaning of expressing the magnitude of the observed discrimination.

3.3 Definition of the discrimination-aware classification problem

The problem we study in the paper can now be stated as follows:

Definition 3 Discrimination-Aware Classification. Given a labeled dataset D, an attribute
S, and a value b € dom(S), learn a classifier C such that:

(a) the accuracy of C for future predictions is high; and
(b) the discrimination of new examples classified by C is low.

Clearly there will be a trade-off between the accuracy and the discrimination of the classifier.
In general, lowering the discrimination will result in lowering the accuracy and vice versa.
This trade-off is further elaborated upon in the next section. In this paper we are making three
strong assumptions:

Al We are implicitly assuming that the primary intention is learning the most accurate
classifier for which the discrimination is 0. When we assume the labels result from a
biased process, insisting on high accuracy may be debatable. Nevertheless, any alter-
native would imply making assumptions on which objects are more likely to have been
mislabeled. Such assumptions would introduce an unacceptable bias in the evaluation
of the algorithms toward favoring those that are based on these assumptions. In the case
where the labels are correct, yet the discrimination comes from the sensitive attribute
being a proxy for absent features, optimizing accuracy is clearly the right thing to do.

A2 Ideally the learned classifier should not use the attribute S to make its predictions. Know-
ing the attribute S at prediction time may lead to a so-called “reverse discrimination”
to cancel out the bad discrimination, which is not always desirable when one can be
held legally accountable for decisions based on the classifier’s predictions. Besides, it is
contradictory to explicitly use the sensitive attribute in decision making while the goal
is to ensure that decisions do not depend on the sensitive attribute.

A3 The total ratio of positive predictions of the learned classifier should be similar to the
ratio of positive labels in the dataset D. This assumption would hold when assigning a
positive label to a person implies an action for which resources are limited; e.g., a bank
that can assign only a limited number of loans or a university having bounded capacity
for admitting students.

4 Theoretical analysis of the accuracy: discrimination trade-off

Before going into the proposed solutions, we first theoretically study the trade-off between
discrimination and accuracy in a general setting.

Definition 4 Let C and C’ be two classifiers. We say that C dominates C' if the accuracy
of C is larger than or equal to the accuracy of C’, and the discrimination of C is at most as
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high as the discrimination of C’. C strictly dominates C' if at least one of these inequalities
is strict.

Given a set of classifiers C, we call a classifier C € C optimal w.r.t. discrimination and
accuracy (DA-optimal) in C if there is no other classifier in C that strictly dominates C.

Notice that according to this definition a classifier with a high negative discrimination
could be DA-optimal. Although this may seem counter-intuitive, it makes sense if we consider
a DA-optimal classifier as a classifier with maximal accuracy among all classifiers with the
same or lower discrimination. If a user wants a classifier that goes beyond just removing
discrimination, and even reverts the discrimination (makes it negative), he or she will have to
trade in even more accuracy. Furthermore, as we will show further on, the relation between
discrimination and accuracy will be monotone for DA-optimal classifiers; i.e., a DA-optimal
classifier with lower discrimination will imply a lower accuracy. If we would have defined the
domination relation w.r.t. absolute value of discrimination, this would result in all classifiers
with negative discrimination to be dominated by the one that corresponds to a discrimination
of 0.

For reasons of simplicity, in our theoretical exposition we assume that a dataset D is given
against which discrimination and accuracy of all classifiers is measured. This assumption
is not limiting our theoretical results since all our results still hold when the cardinality of
D is infinite; i.e., we can think of D as a perfect description of the true underlying prob-
ability distribution. Furthermore, we assume a sensitive attribute S and value b have been
given. We will use acc(C) and disc(C) to denote, respectively, the accuracy of the classifier
C in D and the discrimination of C in D w.r.t. S = b. We will use C,;; to denote the set
of all classifiers and C};, to denote the set of all classifiers C such that P(C(X) = +|X €
D) = P(X(Class) = +|X € D); i.e., all classifiers that have the same overall probability
of assigning the positive label as observed in D.

4.1 Perfect classifiers

We first study the trade-off between accuracy and discrimination if we have perfect knowl-
edge about the probability distribution; i.e., we have a perfect classifier C Perf for D; that is,
cPerf (X) = X (Class) forall X € D. This perfect classifier is clearly DA-optimal in C,;; and
C,; as no other classifier has the same accuracy of 100%. Our first theorem will explain what
is the most optimal way to change this classifier to get other classifiers that are no longer
as accurate, but that are DA-optimal because of their decreased discrimination. The rate at
which these DA-optimal classifiers have to trade in accuracy to reduce discrimination is what
we understand as the accuracy-discrimination trade-off.
Let Dy, and D,, be defined as follows:

Dy :={X e D|X(S) =b}

Dy, ={XeD| XS =w}
and let d, and d,, be, respectively, | Dj| and |D,,|. d denotes | D]|.
Theorem 1 A classifier C is DA-optimal in Cqy; iff

min(dp, dw)

acc(CPy — ace(C) = 7

(disc(CPe'f ) — disc(C))

A classifier C is DA-optimal in C};;; iff

dp d .
Perfy _ _ Ab"w . Perfy _ g:
ace(C") — ace(€) = 295 (dlSC(C ) dlsc(C))
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Proof Let C be a DA-optimal classifier. We denote the number of true negatives, true pos-
itives, false positives, and false negatives of C by, respectively, tn, tp, fp, and fn; e.g., tp =
H{X € D | X(Class) = C(X) = +}|. tp;, denotes the number of true positives that have
S = b. tpy, fpp, ..., and fin,, are defined similarly. With these conventions, we can express
the accuracy and discrimination of C as follows:
tp+1in tpy, + thp + 1, + thy,
acc(C) = =

d d
Dy +fpw _ Dy +fpb

dy dp

Let np, denote the number of objects X in D with X (Class) = — and X (S) = b. Similarly we
define py, ny,, and py, Notice that acc(C) and disc(C) only depend on tpy,, fpy,, tp.,. fP,,- The
other quantities are determined by these four; e.g., tn, = np — fp,. Furthermore, for every
choice of tp;, € [0, ppl. fpp, € [0, npl, tp,, € [0, pyl. fpy, € [0, ny], there is a classifier in C
that corresponds to this choice. Therefore, if C is DA-optimal in C, disc(C) must be equal to
the solution of the following integer optimization problem:

disc(C) =

Minimize
Wy + 0w Py 100
dw db
in function of the integer variables tp,,fp,. tp,,.fP,. subject to the following
constraints:

tpp + (p — fpp) + tpy, + (M — fpy)
d

= acc(C)

0<1tp, <p»
0 <Jpp <mp
Oftpwipw
0 <fpy < ny

In the case of C*, the constraint

oy +Ipp t 0y, /Py = P

needs to be added, where p denotes [{X € D | X(Class) = +}|.

In both cases, i.e., C and C*, any DA-optimal classifier will have fp,, = 0 and tp;, = pp.
For the case C, this is clear as decreasing fp,, and increasing tp;, both decrease disc(C) and
increase acc(C). For C*, we split into two cases:

p» — tpp, > fp,, The following solution strictly dominates C, unless fp,, = 0 and tp;, = py:
[ ), = Pb Py = 1py,
/
1o, =fop + oy +fou, — o 0, =0

This solution satisfies all inequalities and has a lower discrimination and
higher accuracy.
Py — tpp, < fp,, The following solution strictly dominates C, unless fp,, = 0 and tp;, = pp:

[ P, =py 1P, =1py+1py, + Iy — Pb
/
Io, =fop  fpy, =0

Again, this solution satisfies all inequalities and has a lower discrimination
and higher accuracy.
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Hence, we get the following formulas for the difference in accuracy and discrimination
between C and C'7:

1 —ace(C) = M
d
disc(CPy — dise(C) = T 4 b
dy dp
The extra condition for C* becomes:
fpb :fnw .
From these equalities the theorem now easily follows. O

Itis interesting to see that the discrimination-accuracy trade-off is linear; lowering the dis-

crimination level by 1% results in an accuracy decrease of min (dd—”, ‘%) % and an accuracy

decrease of Z‘Z—b%% if the class distribution needs to be maintained. These DA-optimal
classifiers can be constructed from the perfect classifier.

4.2 Imperfect classifiers

In the last theorem we assumed a perfect classifier. In most cases, however, we will only
have an imperfect classifier at our disposal. We will now assume that we have such an
imperfect classifier C of which we want to reduce its discrimination by randomly chang-
ing some of its predictions. The probability with which we will change a prediction of an
instance X will depend on X (S) and X (Class) only. We will denote these four probabilities by
Pb+> Pb—»> Pw+, and py,—. The resulting classifier is denoted C|[pp+, pp—, Pw+, Puw—1; 1.€.,
Clpo+» Po—> Pw+, Pw—1(X) equals C(X) with probability pxs)c(x). Notice that the accu-
racy and discrimination of this random classifier in fact represents the expected accuracy and
discrimination of all deterministic classifiers with py+, pp—, py+, pw— correspondence with
C. We will denote the class of all classifiers that can be derived from C in this way by Cc. C
will denote all classifiers C’ in C¢ for which it holds that P(C'(X) = +) = P(C(X) = +).
The following theorem characterizes the DA-optimal classifiers of C¢ and of C¢.

Theorem 2 If classifier C' is DA-optimal in Cc, then

min(dp, dw)

Elacc(C) — acc(C)H] = acc(C) — 1) 7

(disc(C) — disc(C"))
If classifier C' is DA-optimal in C}., then

Elacc(C) — acc(C)] = 2Qacc(C) — l)%%v(disc(C) —disc(C"))

E[.] denotes here the expected value over all databases D on which C has accuracy acc(C)
and discrimination disc(C).

Proof We assume, without loss of generality, that acc(C) > 0.5; if this is not the case, we
switch all predictions of C to obtain a new classifier with an accuracy of 1 —acc(C). Let now
C’ be any classifier with corr(C, C') = y; i.e., C and C’ agree (correspond) on a fraction y
of the dataset D. Then, the expected value for the accuracy of C’ can be computed as follows:

@ Springer



12 F. Kamiran, T. Calders

Elacc(C')] = [P(C(X) = C'(X)) x P(C(X) = X(Class))
+ P(C(X) # C'(X)) x P(C(X) # X(Class))]
= corr(C, Cacc(C) + (1 — corr(C, CH)(1 — acc(C))
= corr(C, C"Y(2acc(C) — 1) + (1 — acc(C))
Notice that in the given derivation we assume that agreement of C and C’ on an instance X is
independent from correctness of the prediction of C for X. C[pp+, pp—, Puw+, Pw—] satisfies
this condition. As such, the expected accuracy of the classifiers in Cc and Cf. only depend

on their correspondence with C, and the higher the correspondence, the higher the accuracy.
Furthermore,

Elacc(C) — acc(C)] = Racc(C) — 1)(1 — corr(C, C))

On the other hand, we can use Theorem 1 to find the relation between the maximal
correspondence with C and the discrimination of the classifier C’; the maximal reduction in
discrimination linked to the minimal reduction in correspondence is as follows:

in(dp, d
min_ (1= corr(C.C"y) = ") ey~ 5
C'eCe . disc(C)=5 d
and for C{.,
dp d
min (1 —corr(C,C)) = 2222 dise(C) — §)
C’eC}. disc(C')=5 d d
Combining these two facts leads directly to the theorem. O

Again we see a linear trade-off. This linear trade-off could be interpreted as bad news: no
matter what we do, we will always have to trade in accuracy proportional to the decrease in
discrimination we want to achieve. Especially when the classes are balanced, this is a high
price to pay.

4.3 Classifiers based on rankers

On the bright side, however, most classification models actually provide a score or probability
for each tuple for being in the positive class instead of only giving the class label. Such a
scoring classifier, called a ranker, actually ranks the objects according to its assessment of
the probability that the object is in the positive class. The score allows us for a more careful
choice of objects of which to change the prediction: instead of using a uniform chance for all
tuples with the same predicted class and S-value, the score can be used as follows. Assume
a scoring classifier R that assigns to all objects a score. We can dynamically set different
cut-off ¢ and ¢,, for, respectively, tuples with S = b and S = w to obtain the classifier
R(cp, cy) that will predict + for a tuple X if X (S) = b and R(X) > ¢p and if X (S) = w and
R(X) > c¢,. Otherwise — is predicted. We denote the class of all classifiers R(cp, cy) by
Cg. Intuitively one expects that slight changes to the discrimination will only incur minimal
changes to the accuracy, as the tuples that are being changed are the least certain ones and
hence sometimes a change will actually result in a better accuracy. The decrease in accuracy
will thus no longer be linear in the change in discrimination, but its rate will increase as
the change in discrimination increases, until in the end it becomes linear again, because the
tuples we change will become increasingly more certain leading to a case similar to that of
the perfect classifier. A full analytical exposition of this case is far beyond the scope of this
paper. Instead, we tested this trade-off empirically. The results of this study are shown in
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Fig. 1 Trade-off between accuracy and discrimination (dependence) for the DA-optimal classifiers in Cg
and C¢. a Decision tree. b IBk. ¢ Naive Bayes

Fig. 1. In this figure the DA-optimal classifiers in the classes Cr (curves) and C (straight line)
are shown for the Census Income dataset [1]. The three classifiers are a Decision Tree (J48),
an instance-based classification model with three neighbors (IBk), and a Naive Bayesian
Classifier (NBS). The ranking versions are obtained from, respectively, the (training) class
distribution in the leaves, a distance-weighted average of the labels of the 3 nearest neighbors,
and the posterior probability score. The classifiers based on the scores perform considerably
better than those based on the classifier only.

4.4 Conclusion

In this section the accuracy-discrimination trade-off is clearly illustrated. It is theoretically
shown that if we rely on classifiers, and not on rankers, the best we can hope for is a linear
trade-off between accuracy and discrimination. For important classes of classifiers the DA-
optimal classifiers were explicitly constructed. Notice, however, that the theoretical solutions
proposed in this section violate our assumption A2; the classifiers C[pp+, Ppr—» Pw+> Pw—]
and R(cp, cyy) heavily use the attribute S to make their predictions. Therefore, these optimal
solutions are not suitable for our purposes. In the next section, three solutions will be pro-
posed that do not make use of the attribute S at prediction time, but only in the learning phase.
The theoretically optimal solutions proposed in this section can be seen as “top-lines” which
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14 F. Kamiran, T. Calders

in theory we cannot outperform (without S we have strictly less information and hence, if
our learning methods would be perfect, our model of the distribution that generated the data
deteriorates). The theoretical results represent the goal that we want to approach as close as
possible.

5 Solutions: data preprocessing techniques

In this section we propose three solutions to learn a non-discriminating classifier that uses
the attribute S only during learning and not at prediction time. All solutions are based on
removing the discrimination from the training dataset. Subsequently, a classifier is learned
on this cleaned dataset. Our rationale for this approach is that, since the classifier is trained
on discrimination-free data, it is likely that its predictions will be (more) discrimination-free
as well. The empirical evaluation in Sect. 6 will confirm this statement. The first approach
we present, called Massaging the data, is based on changing the class labels in order to
remove the discrimination from the training data. A preliminary version of this approach
was presented in [13]. The second approach is less intrusive as it does not change the class
labels. Instead, weights are assigned to the data objects to make the dataset discrimina-
tion-free. This approach will be called Reweighing. Since reweighing requires the learner
to be able to work with weighted tuples, we propose another solution without this require-
ment, in which we re-sample the dataset in such a way that the discrimination is removed.
We will refer to this approach as Sampling. Two ways of sampling will be presented and
tested.

5.1 Massaging

Algorithm 1: Learn Classifier on Massaged Data
Input: Labeled dataset D, sensitive attribute S and value b, desired class +
Output: Classifier C, learned on massaged D
1: (pr, dem) := Rank(D, S, b, +)
o o Giscs=p(D) X |{X € D| X($) = b}l x |{X € D | X(8) = w}|
o |D|

: Select the top-M of pr

: Change the class label of the M selected objects to +
: Select the top-M objects of dem

: Change the class label of the M selected objects to —
: Train a classifier C on the modified D

: return C

In Massaging, we will change the labels of some objects X with X (S) = b from — to +,
and the same number of objects with X (S) = w from + to —. In this way the discrimination
decreases, yet the overall class distribution is maintained. From the proof of Theorem 1 we
know that this strategy reduces the discrimination to the desirable level with the least number
of changes to the dataset while keeping the overall class distribution fixed. The set pr of
objects X with X (§) = b and X (Class) = — will be called the promotion candidates and
the set dem of objects X with X (S) = w and X(Class) = + will be called the demotion
candidates.

We will not randomly pick promotion and demotion candidates to relabel. On the train-
ing data, a ranker R for ranking the objects according to their positive class probability is
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Algorithm 2: Rank

Input: Labeled dataset D, Sensitive attribute and value S, b, desired class +
Output: Ordered promotion list pr and demotion list dem

: Learn a ranker R for prediction 4 using D as training data

cpr:={X € D| X(S) =b, X(Class) = —}

cdem:={X € D| X(S) = w, X(Class) = +}

: Order pr descending w.r.t. the scores by R

: Order dem ascending w.r.t. the scores by R

: return (pr, dem)

AN AW —

learned. We assume that higher scores indicate a higher chance to be in the positive class.
With this ranker, the promotion candidates are sorted according to descending score by R
and the demotion candidates according to ascending score. When selecting promotion and
demotion candidates, first the top elements will be chosen. In this way, the objects closest
to the decision border are selected first to be relabeled, leading to a minimal effect on the
accuracy. This modification of the training data is continued until the discrimination becomes
zero. The number M of pairs needed to be modified to make a dataset D discrimination-free
can be calculated as follows. If we modify M pairs, the resulting discrimination will be:

-M M 1 1 D
Puw _ M oDy - M (— + —) = disc(D) — (MA)
[Dy| | Dp| Dyl Dyl [ Dy || Dpl

To reach zero discrimination, we hence have to make:

disc(D) x |Dp| x |Dy|
|D|

M =

modifications. Recall that D, and D,, denote the objects in D with § = b and § = w,
respectively, and pj and p,, are the number of positive objects with, respectively, S = b and
S = w. If the resultant number M is not a whole number, we round it up, which will result a
slight negative discrimination. We relabel the M top elements from both the promotion and
demotion lists.

Example 2 Consider again the dataset D given in Table 1. We want to learn a classifier to
predict the class of objects for which the predictions are non-discriminatory toward Sex = f.
In this example we rank the objects by their positive class probability given by a Naive Bayes
classification model. In Table 2 the positive class probabilities as given by this ranker are
added to the table for reference (calculated using the “NBS” classifier of Weka). In the second
step, we arrange the data separately for female applicant with class — in descending order
and for male applicants with class + in ascending order with respect to their positive class
probability. The ordered promotion and demotion candidates are given in Table 3.

The number M of labels of promotion and demotion candidates we need to change equals:

M= disc(D) x |Dfemale| X | Dae] _ 40% x 5 x5

= =1
|D] 10

So, relabeling one promotion candidate and one demotion candidate makes the data discrim-
ination-free. We hence relabel the highest scoring female with a negative label and the lowest
scoring male with a positive label. After the labels for these instances have been changed, the
discrimination becomes 0%. The resulting dataset will be used as a training set for classifier
induction. O
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Table 2 Sample job-application relation with positive class probability

Sex Ethnicity Highest degree Job type CL Prob (%)
M Native H. school Board + 98
M Native Univ. Board + 89
M Native H. school Board + 98
M Non-nat. H. school Healthcare + 69
M Non-nat. Univ. Healthcare - 30
F Non-nat. Univ. Education - 2
F Native H. school Education — 40
F Native None Healthcare + 76
F Non-nat. Univ. Education - 2
F Native H. school Board + 93

Table 3 Promotion candidates (negative objects with Sex = f in descending order) and demotion candidates
(positive objects with Sex = m in ascending order)

Sex Ethnicity Highest degree Job type CL Prob (%)
F Native H. school Education - 40
F Non-nat. Univ. Education - 2
F Non-nat. Univ. Education - 2
M Non-nat. H. school Healthcare + 69
M Native Univ. Board + 89
M Native H. school Board + 98
M Native H. school Board + 98

Algorithm The pseudocode of our algorithm is given in Algorithms 1 and 2. Algorithm 1
describes changing the class labels and classifier learning, and Algorithm 2 the sorting of the
promotion and demotion lists.

5.2 Reweighing

The Massaging approach is rather intrusive as it changes the labels of the objects. Our
second approach does not have this disadvantage. Instead of relabeling the objects, different
weights will be attached to them. For example, objects with X (S) = b and X (Class) = +
will get higher weights than objects with X (S) = b and X (Class) = — and objects with
X(S) = w and X (Class) = + will get lower weights than objects with X (S) = w and
X (Class) = —. We will refer to this method as Reweighing. Again we assume that we want
to reduce the discrimination to 0 while maintaining the overall positive class probability. We
now discuss the idea behind the weight calculation.

If the dataset D is unbiased, i.e., S and Class are statistically independent, the expected
probability Py, (S = b A Class = +) would be:

XeD|XS)=0b XeD|X(CI =
Pop(S =b A Class = +) = (X e ||D|() }|x|{ €D| |(D|ass) il
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Algorithm 3: Reweighing

Input: (D, S, Class)

Output: Classifier learned on reweighed D
1: for s € {b, w} do

2: force{—,+}do

Let W(s, ¢) :=

end for
end for
: Dy = {}
: for X in D do
Add (X, W(X(S), X(Class))) to Dy
end for
10: Train a classifier C on training set Dy, taking onto account the weights
11: return Classifier C

HX € D] X(S) =s}| x {X € D| X(Class) = c}|
ID| x {X € D | X(Class) = c and X(S) = s}|

D A

In reality, however, the observed probability in D,

H{X € D| X(S) =b A X(Class) = +}|
|D|
might be different. If the expected probability is higher than the observed probability value,
it shows the bias toward class — for those objects X with X (S) = b.

To compensate for the bias, we will assign lower weights to objects that have been deprived
or favored. Every object X will be assigned weight:

Pexp(S = X (S) A Class = X(Class))
Pops(S = X (S) A Class = X (Class)) ’

i.e., the weight of an object will be the expected probability to see an instance with its sensitive
attribute value and class given independence, divided by its observed probability.

In this way we assign a weight to every tuple according to its S and Class-values. We will
call the dataset D with the added weights, Dy . It is easy to see that Dy is unbiased; i.e., if
we multiply the frequency of every object by its weight, the discrimination would be 0. On
this balanced dataset the discrimination-free classifier is learned.

Pops(S = b A Class = +) =

W(X) =

Example 3 Consider again the dataset in Table 1. The weight for each data object is computed
according to its S- and Class-value. We calculate the weight of a data object with X (S) = f
and X (Class) + as follows. We know that 50% objects have X (S) = f and 60% objects have
Class-value +, so the expected probability of the object should be:

Poyp(Sex =f A X(Class) = +) = 0.5 x 0.6 =30%
but its actually observed probability is 20%. So the weight W (X) will be:

0.5x0.6
WX)=——"—=15.
0.2
Similarly, the weights of all other combinations are as follows:
1.5 if X(Sex) =f and X (Class) = +
W(X) = 0.67 if X(Sex) = f and X (Class) = —
1 0.75 if X(Sex) = m and X (Class) = +

2 if X(Sex) = m and X (Class) = —

The weight of each data object of the Table 1 is given in Table 4.
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Table 4 Sample job-application relation with weights

Sex Ethnicity Highest degree Job type CL Weight
M Native H. school Board + 0.75
M Native Univ. Board + 0.75
M Native H. school Board + 0.75
M Non-nat. H. school Healthcare + 0.75
M Non-nat. Univ. Healthcare — 2

F Non-nat. Univ. Education - 0.67
F Native H. school Education - 0.67
F Native None Healthcare + 1.5
F Non-nat. Univ. Education - 0.67
F Native H. school Board + 1.5

The pseudocode of the algorithm describing our Reweighing approach is given in
Algorithm 3.

5.3 Sampling

Since not all classifier learners can directly incorporate weights in their learning process, we
also propose a Sampling approach. The dataset with weights is transformed by sampling the
objects with replacement according to their weights.

We partition the dataset into four groups: DP (Deprived community with Positive
class labels), DN (Deprived community with Negative class labels), FP (Favored com-
munity with Positive class labels), and FN (Favored community with Negative class
labels):

DP :={X € D | X(S) = b A X(Class) = +}
DN :={X € D| X(S) =b A X(Class) = —}
FP:={X e D|X(S) =w A X(Class) = +}
FN :={X € D| X(S) = w A X(Class) = —}.

Consider Fig. 2, representing a dataset with 40 data points. The data points in the positive
class are represented by +, the data points of the negative class by —. The projection on
the horizontal axis represents the probability of each data object to be in the positive class:
the more to the right is the point, the higher its positive class probability. This probabil-
ity comes, e.g., from a ranker we learned on the training data. This probability will only
be of interest for our second sampling method, the preferential sampling, and can for the
moment be ignored. The data points plotted in the upper half of the graph, respectively,
the lower half, represent the deprived, respectively, the favored community. In the case of
discrimination, the relative size of DN versus DP will be larger than the relative size of FN
versus FP.

Similar as in Reweighing, we compute for each of the groups FN, FP, DP, and DN their
expected sizes if the given dataset would have been non-discriminatory, as shown in the
following table:
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Deprived community

b - - - - - - } + + + +
DN s DP
- - - - - - }o + + + +
r
lg
! e Desired class probability
- - - - }L + + + + + +
w FN li FP
- - - }2 + + + + + +

Favored community

Fig. 2 Pictorial representation of a dataset with 40 datapoints. The points are split into the deprived commu-
nity (top) and the favored community (bottom). Their relative position on the horizontal axis represents the
probability that they belong to the positive class according to the distribution of the data. Since the dataset
contains discrimination, the favored objects tend to be more on the right than the deprived objects

Algorithm 4: Uniform Sampling

Input: (D, S, Class)

Output: Classifier C learned on resampled D
1: for s € {b, w} do

2: force{—,+}do

Let W(s, c) :=

H{X € D] X(S) =s}| x {X € D| X(Class) = c}|
ID| x {X € D | X(Class) = c and X(S) = s}|

3
4:  end for

5: end for

6: Sample uniformly W (b, +) x |D P| objects from DP;

7: Sample uniformly W (w, +) x |F P| objects from FP;

8: Sample uniformly W (b, —) x |DN| objects from DN;

: Sample uniformly W(w, —) x |F N| objects from FN;

10: Let Dyg be the bag of all samples generated in steps 6 to 9
11: return Classifier C learned on Dyg

Ne)

Samplesize DP DN FP FN
Actual 8 12 12 8
Expected 10 10 10 10

This time, however, the ratio between the expected group size and the observed group size
will not be used as a weight to be added to the individual objects, but instead we will sample
each of the groups separately, until its expected group size is reached. For the groups FP and
DN this means that they will be under-sampled (the objects in those groups have a weight of
less than 1), whereas the other groups FN and DP will be over-sampled.

5.3.1 Uniform sampling

As the name already suggests, in US all the data objects of the same group have the same
chance of being duplicated or skipped; if we need to sample n objects from a group P, US
will apply uniform sampling with replacement. In Fig. 3 a possible re-sampling of the dataset
is given; the bold elements are duplicated while the encircled objects are removed. Algorithm
4 gives a formal description of the US method.
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Fig. 3 Pictorial representation of the Uniform Sampling scheme. The re-substituted data points are in bold
while the encircled ones are skipped
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Fig. 4 Pictorial representation of Preferential Sampling scheme. The re-substituted data points are in bold
while the encircled ones are skipped

5.3.2 Preferential sampling

In Preferential Sampling (PS) we use the idea that data objects close to the decision boundary
are more likely to be discriminated or favored due to discrimination in the dataset. To identify
the borderline objects, PS starts by learning a ranker on the training data. PS uses this ranker
to sort the data objects of DP and FP in ascending order, and the objects of DN and FN in
descending order w.r.t. the positive class probability. Such arrangement of data objects makes
sure that the higher up in the ranking an element occurs, the closer it is to the boundary.

PS starts from the original training dataset and iteratively duplicates (for the groups DP
and FN) and removes objects (for the groups DN and FP) in the following way:

— Decreasing the size of a group is always done by removing the data objects closest to the
boundary; i.e., the top elements in the ranked list.

— Increasing the sample size is done by duplication of the data object closest to the boundary.
When an object has been duplicated, it is moved, together with its duplicate, to the bottom
of the ranking. We repeat this procedure until the desired number of objects is obtained.

Figure 4 gives the resampling of dataset shown in Fig. 2 to make it discrimination-free by

using the preferential sampling method. In most cases, only a few data objects have to be
duplicated or removed. The exact algorithm is given in Algorithm 5.
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Algorithm S: Preferential Sampling

Input: (D, S, Class)
Output: Classifier C learned on resampled D
1: for s € {b, w} do

2: force{—,+}do
XeD|X(S) =s:s X € D| X(Class) = ¢
3 Let W(s. ¢) i= [{X € D| X(S) =s}| x {X € D| X(Class) = c}|
ID| x {X € D | X(Class) = c and X(S) = s}|
4:  end for
5: end for
6: Learn a ranker R for predicting + using D as training set
7: Dps = {}
8: Add [W(b, +)] copies of DP to Dpg
9: Add |[W(b,+) — [W(b,+)] x |DP|] lowest ranked elements of DP to Dpg

10: Add [W (b, —) x |DN|] lowest ranked elements of DN to Dpg

11: Add [W(w, +) x |F P|] highest ranked elements of FP to Dpg

12: Add [W(w, —)] copies of FN to Dpg

13: Add |[W(w, =) — [W(b, —)] x |FN|] highest ranked elements of FN to Dpg
14: return Classifier C learned on Dpg

6 Experiments

All preprocessing methods introduced in the paper have been implemented and tested. We
compare the following algorithms:

1. The preprocessing techniques introduced in the paper:

(a) The Massaging approach with different rankers. We consider two different rankers:
one based on a Naive Bayes classifier (M_NBS) and one based on a nearest neighbor
classifier with 7 neighbors (M_IBk7). These rankers are used to relabel the dataset
to make it discrimination-free.

(b) Reweighing (RW) and Uniform Sampling (US); these methods are parameter-free
as they do not rely on a ranker.

(c) Preferential Sampling (PS) with a Naive Bayes classifier as ranker.

This gives a total of 5 preprocessing methods to clean away the discrimination of the input
data. On the cleaned data, different base classifiers were trained: a Naive Bayes Classifier
(NBS), three nearest neighbor classifiers with, respectively, 1, 3, and 7 neighbors (IBk1, IBk3,
and IBk7), and a decision tree learner: the Weka implementation of the C4.5 classifier (J48).
This gives a total of 5 x 5 = 25 combinations. Many more combinations have been tested
(including, e.g., Adaboost and a large variety of rankers for the Massaging approach) but we
restricted ourselves to the choices above as they present a good summary of the obtained
results; for the other classifiers, similar results were obtained.

2. Two baseline approaches:

(a) An out-of-the-box classifier not taking any anti-discrimination measures into
account in any way (labeled “No” to reflect no preprocessing was used); we compare
to this baseline to see what is the net benefit w.r.t. discrimination-reduction of our
proposed methods and how much accuracy we have to trade in for that reduction.

(b) We remove the sensitive attribute and its most correlated attributes before learn-
ing (“No_SA” for No Sex Attribute). In this way we get many baseline classifiers,
depending on how many of the correlated attributes we remove.

We analyze our proposed algorithms in two scenarios:
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1. S is part of the training set, but cannot be used during prediction. In these experiments
we only use the information about § for evaluating the discrimination measurement, but
S is not considered for prediction. Notice that this setup respects all our assumptions.

2. Sispartof the training set and can be used at prediction time. This setup actually violates
our assumption (A2) that S should not be used during prediction but has been added for
reference.

Datasets. In our experiments we used the Census Income and Communities and Crimes
datasets, available in the UCI ML repository [1]. The Census Income dataset has 48,842
instances and contains demographic information of people. The associated prediction task is
to determine whether a person makes over 50K per year or not; i.e., income class High or Low
will be predicted. We denote income class High as + and income class Low as —. Each data
object is described by 14 attributes, of which 8 are categorical and 6 are numerical attributes.
We excluded the attribute fnlwgt from our experiments (as suggested in the documentation
of the dataset). The other attributes in the dataset include: age, type of work, education, years
of education, marital status, occupation, type of relationship (husband, wife, not in family),
sex, race, native country, capital gain, capital loss, and weekly working hours. We use Sex
as discriminatory attribute. In our sample of the dataset, 16,192 citizens have Sex = f and
32,650 have Sex = m. The discrimination is 19.45%:

P(X(Class) = + | X(Sex) = m) — P(X(Class) = + | X(Sex) = f) = 19.45%

The Communities and Crimes dataset has 1994 instances which give information about
different communities and crimes within the United States. Each instance is described by 122
predictive attributes which are used to predict the total number of violent crimes per 100K
population. In our experiments we use only predictive attributes which are numeric. We add
a sensitive attribute Black to divide the communities by thresholding the numerical attribute
racepctblack at 0.06. We discretized the class attribute to divide the data objects into major
and minor violent communities.

We also apply our proposed techniques to the Dutch census datasets of the year 2001
[11]. The Dutch Census 2001 dataset has 189,725 instances representing aggregated groups
of inhabitants of the Netherlands in 2001. The dataset is described by 13 attributes namely
sex, age, household position, household size, place of previous residence, citizenship, country
of birth, education level, economic status (economically active or inactive), current economic
activity, marital status, weight, and occupation. We removed the records of underage peo-
ple, some middle level professions and people with unknown professions, leaving 60,420
instances for our experiments. We use the attribute occupation as a class attribute with values
“high level” (prestigious) and “low level” professions. sex is the sensitive attribute.

Experimental setup. The goal is to learn a classifier that has minimal discrimination and
maintains high accuracy. All reported accuracy numbers in the paper were obtained using
10-fold cross-validation and reflect the true accuracy; that is, on unaltered data (no pre-
processing is applied). Figure 5 shows a detailed representation of our experimental setup.
We can observe in Fig. 5 that we apply, in each iteration of the cross-validation, our proposed
preprocessing methods only to the folds for training and not to the test fold. We use this
preprocessed training set for learning a classifier and evaluate this learnt classifier over the
test fold of this iteration. The predictions for the test fold are stored. We repeat this process
for all folds and append all predictions on the test sets over all folds. Based on the predic-
tions and the true class we calculate the final accuracy and discrimination scores. It is also
important to notice that no parameter tuning was performed; our preprocessing methods are
parameter-free and all base learners were ran in Weka with their default parameter settings.
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Dataset is split in 10 folds
Repeat for all folds k = 1...10

Pre-process
 —

- massaging
- reweighing
- sampling

id true class
1 +
2 -

Predictions Model
for fold k
] [
Y ~_—
H id pred.class
Flna.l accuracy ! * Combine the predictions
and discrimination < 2 for all folds
scores
Fig. 5 10-fold cross-validation experimental setup
Table 5 Performance of Dataset With S (%) Without S (%)
classifiers trained on
discriminatory data; with and German credit 11.09 9.32
without the sensitive attribute
Census income 16.48 16.65
Communities and crimes 40.14 38.07
The results clearly confirm the Dutch 2001 census 34.91 17.92

existence of a redlining effect

All datasets and the source code of all implementations reported upon in this section are
available at https://sites.google.com/site/faisalkamiran/. Experiments over the rather small
German Credit dataset available in the UCI ML repository have not been included here but
can be found in [13].

6.1 Redlining

Our first experiment concerns the redlining effect, i.e., removing the attribute S from the
dataset does not always result in the removal of the discrimination, because of indirect dis-
crimination due to other attributes that correlate with S. For all datasets we show in Table 5
the discrimination of a classifier (a decision tree) learned on unaltered training data, with
and without the sensitive attribute. The results clearly motivate our work: classifiers learned
on biased data produce biased classifiers, even if the sensitive attribute is removed during
training.

6.2 Census income dataset

In Fig. 6a,b, respectively, the discrimination and accuracy results for all algorithms under
comparison are given. On the X axis are the names of the data preprocessing techniques used
to make the training dataset discrimination-free. The resultant discrimination has been given
on the Y axis of Fig. 6a and the accuracy on the Y axis of Fig. 6b. We observe that the classi-
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Fig.7 The results of 10-fold CV for Census Income dataset when S is used for both learning and prediction.
a Baseline discrimination=19.45. b Baseline accuracy=76.3

fiers learned on the preprocessed data produce less discriminatory results as compared to the
baseline algorithms; in Fig. 6a we see that IBk7 classifies the future data objects with 17.93%
discrimination which is lowered only slightly if the Sex attribute is removed. If Preferential
Sampling is applied, however, the discrimination goes down to 0.11%. On the other hand, We
observe in Fig. 6b that the loss in accuracy is modest in comparison with the large reduction
in discrimination. The discrimination always goes down when we apply our classifiers with
non-discrimination constraints, while accuracy remains at a high level. In these experiments,
we omitted S from our test datasets.

Figure 7a,b represent the results of the same experiment, except that this time S can be
used at prediction time. These two experiments produce very similar results. We observe that
the combination of J48 as base learner for Massaging produces promising results. PS gives
excellent results when it is used with unstable classifiers, e.g., J48. When PS is used with J48,
the discrimination level decreases from 16.48 to 3.32% while the accuracy level decreases
from 86.05 to 84.3%. Figure 7b shows the resultant accuracy for all these methods. We find
that the Reweighing approach maintains a high accuracy level.

Figure 8a,b offer a good overview that allows us to quickly assess which of the combi-
nations are DA-optimal (discrimination-accuracy-optimal) among the classifiers learned in
our experiments. Figure 8a represents a graphical representation of the experiments when the
attribute Sex is not used at prediction time. Figure 8b shows the results of the experiments
when Sex is used at prediction time. Each pictogram in these figures represents a particular
combination of a classification algorithm (shown by the outer symbol) and a preprocessing
technique (shown by the inner symbol). For Massaging, the inner symbol represents the
ranker that was used. On the X axis we see the discrimination and on the Y axis, the accuracy.
Thus, we can see the trade-off between accuracy and discrimination for each combination.
The closer we are to the top left corner the higher accuracy and the lower discrimination
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Fig. 8 Accuracy-discrimination trade-off comparison for the Census Income dataset. Outer and inner sym-
bol of each data point shows the corresponding base learner and preprocessing technique, respectively. Three
lines represent the baselines for three classifiers J48, NBS, and IBK3 (fop to bottom). a S is used in the learning
phase but not for prediction. b S is used for both learning and prediction

we obtain. The three lines in the figure represent the baselines: three classifiers (J48, NBS,
and IBk3) learned on the original dataset (the most top-right point in each line, denoted with
With_SA symbol), the original dataset with the Sex attribute removed (denoted with No_SA
symbol), the original dataset with the Sex attribute and the one (two, three, and so on) most
correlated attribute(s) removed (that typically correspond to the further decrease in both accu-
racy and discrimination). We observe that the top left area in the figure is occupied by the data
points corresponding to the performance of Massaging and PS approaches. The Reweighing
and US approaches fall behind Massaging but also show reasonable performance. From Fig.
8a,b we can see that our approaches compare favorably to the baselines in the sense that
almost all combinations dominate the baseline solutions.

6.3 Other datasets

We repeated all the experiments with the other datasets as well: the Dutch 2001 Census and
the Communities and Crimes datasets. The results of these experiments are shown, respec-
tively, in Figs. 9 and 10. We observe that our proposed discrimination-aware classification
methods outperform the traditional classification methods and baseline approaches w.r.t. the
accuracy-discrimination trade-off; in both datasets the discrimination is considerably lowered
from initially around 40%, at the cost of only very little accuracy.
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Fig. 9 Accuracy-discrimination trade-off comparison for the Dutch 2001 Census dataset. Outer and inner
symbol of each data point shows the corresponding base learner and preprocessing technique, respectively.
Three lines represent the baselines for three classifiers J48, IBK3, and NBS (fop to bottom). a S is used in the
learning phase but not for prediction. b S is used for both learning and prediction

6.4 How to choose a base classifier for massaging?

From the different experiments it is not clear which base classifier is preferable for the
Massaging method, although it seems that the effect is better transferred to future classifi-
cation in case of unstable classifiers such as, e.g., decision trees, in the sense that both the
discrimination level and the accuracy go down more than for a stable (noise-resistent) clas-
sifier such as, e.g., Naive Bayes. We conducted additional controlled experiments to further
explore this issue. In our controlled experiments, we used a k-nearest neighbor classifier as a
base classifier for the Massaging method. This classifier has the advantage that we can influ-
ence its stability with the parameter k: the higher &, the more stable it becomes. Figure 11
represent the results of the experiments with IBk as base learner and NBS as ranker
for the Massaging approach. We changed the value of & for IBk from 1 to 19 (only
odd values) to change its stability as a base classifier. We observe that the resultant dis-
crimination and accuracy increase both with increasing k. From these controlled experi-
ments, we make the following observation: if minimal discrimination is the first priority,
an unstable classifier, i.e., a classifier more sensitive to noise as base learner, is the bet-
ter option and if high accuracy is the main concern, a stable classifier might be more
suitable.
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6.5 Comparison with other, non-preprocessing techniques

For completeness, Fig. 12 gives a comparison of our proposed pre-processing methods with
the other current state-of-art methods, i.e., the methods of [15] (labeled DA-Trees in the
graph) and [4] (labeled Three-NB in the graph). We only depicted the results for which the
discrimination is between O and 4%. We can observe that our proposed methods clearly
outperform the best result picked from [4] and have comparable performance as the discrim-
ination-aware trees of [15]. Our methods, however, have a much wider applicability as they
can be used with any classifiers while the methods of [15] and [4] are restricted to, respec-
tively, decision trees and Naive Bayes classifiers. If these classifier types are not performing
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Fig. 12 Accuracy and discrimination comparison of our proposed method to the other current state-of-the-art
methods. All methods are evaluated over the Census Income dataset

well on a given dataset, the discrimination-aware methods based upon them will also give
poor performance.

6.6 Conclusions of the experiments

From the results of our experiments we draw the following conclusions:

1. Just removing the sensitive attribute from the dataset is not enough to ensure discrimi-
nation-aware classification due to the redlining effect.

2. Our proposed preprocessing methods consistently outperform the baseline methods w.r.t.
the accuracy-discrimination trade-off.

3. The proposed methods for discrimination-aware classification can be combined with any
classifier. The preprocessing is more effective when training unstable classifiers.

7 Related work

Despite the abundance of related works, none of them satisfactorily solves the classification
with non-discrimination constraints problem. We consider related work in Discrimination-
Aware Data Mining itself, cost-sensitive classification, constraint-based classification, and
sampling techniques for unbalanced datasets.

In Discrimination-Aware Data Mining two main directions can be distinguished: detec-
tion of discrimination [21-24], and the direction followed in this paper, namely learning
classifiers if the data are discriminatory [4,15]. A central notion in the works on identifying
discriminatory rules is that of the context of the discrimination. That is, specific regions in the
data are identified in which the discrimination is particularly high. These works focus also
on the case where the discriminatory attribute is not present in the dataset and background
knowledge for the identification of discriminatory guidelines has to be used. The works on
discrimination-aware classification in which our paper falls, however, assume that the dis-
criminatory data are given but the discrimination should be avoided in future predictions. As
such our work can be seen as a logical following step after the detection of discrimination.
In the current paper, we concentrate on preprocessing techniques after which the normal
classifiers can be trained. Another option is to learn classifiers on discriminatory data, and
adapt the learning process itself of e.g., decision trees [15] or Bayesian learners [4].
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In a recent paper, the authors of [19] propose a variant of k-NN classification for the
discovery of discriminated objects. They consider a data object as discriminated if there
exist a significant difference of treatment among its neighbors belonging to a protected-
by-law group (i.e., the deprived community) and its neighbors not belonging to it (i.e.,
the favored community). They also propose a discrimination prevention method by chang-
ing the class labels of these discriminated objects. This discrimination prevention method
is very close to our Massaging technique [13], especially when the ranker being used is
based upon a nearest neighbor classifier. There is, however, one big difference: whereas
in massaging only the minimal number of objects is changed to remove all discrimination
from the dataset, the authors of [19] propose to continue relabeling until all labels are con-
sistent. From a legal point of view, the cleaned dataset obtained by [19] is probably more
desirable as it contains less “illegal inconsistencies.” For the task of discrimination-aware
classification, however, it is unclear if the obtained dataset is suitable for learning a discrimi-
nation-free classifier. The exploration of this option could be a promising direction for further
research.

The authors of [32] address a similar problem and propose methods to build classifiers
when data come from multiple sources (one of the reasons for discrimination, discussed in
scenario 2 of Sect. 1). They mainly focus, however, to get high accuracy scores and do not
take the discrimination aspect into account.

In Constraint-Based Classification, next to a training dataset also some constraints on
the model have been given. Only those models that satisfy the constraints are considered in
model selection. For example, when learning a decision tree, an upper bound on the number
of nodes in the tree can be imposed. Our proposed classification problem with non-discrim-
ination constraints clearly fits into this framework. Most existing works on constraint-based
classification, however, impose purely syntactic constraints limiting, e.g., model complexity,
or explicitly enforcing the predicted class for certain examples. The difference with our work
is that for the syntactic constraints, the satisfaction does not depend on the data itself, but
only on the model and most research concentrates on efficiently listing the subset of models
that satisfy the constraints. In our case, however, satisfaction of the constraints depends on
the data itself and hence requires a different approach. One noteworthy exception is mono-
tone classification [10,18]. In monotone classification, next to the normal labeled training
data, additionally a function is given for which the predictions should be monotone. An
example of such a constraint could be that when assigning a loan based on a number of
scores, the assigned label should be monotone in the scores; e.g., if one person gets assigned
the loan, and another person scores higher while all other fields are equal to the first person,
then the second person should receive the loan as well. Whereas the discrimination criterion
is global, the monotonicity criterion is local in the sense that it can be checked by look-
ing at pairs of tuples only. Also, in many cases, the monotonicity can and will be checked
syntactically.

In Cost-Sensitive and Utility-Based learning [5,12,20,28,31], it is assumed that not all
types of prediction errors are equal and not all examples are as important. For example,
if the classification task is to predict if an e-mail is spam, the cost of a false positive, i.e.,
wrongly filtering out a righteous e-mail as spam, is many times higher than the cost of a false
negative, i.e., letting through a spam e-mail. The type of error (false positive versus false
negative) determines the cost. Sometimes costs can also depend on individual examples. In
cost-sensitive learning the goal is no longer to optimize the accuracy of the prediction, but
rather the total cost. Our Reweighing technique can be seen as an instance of cost-sensitive
learning in which, e.g., an object of class + with X(§) = b gets a higher weight and
hence an error for this object becomes more expensive. Domingos proposes a method named
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MetaCost [9] for making classifiers cost-sensitive by wrapping a cost minimizing procedure
around them. MetaCost assumes that costs of misclassifying the examples are known in
advance and are the same for all the examples. It is based on relabeling the training examples
with their estimated minimal-cost classes, and applying the error-based learner to the new
training set. As such, MetaCost has some similarity with Massaging with respect to rela-
beling the training data, but Massaging relabels only the training examples, which may be
potentially misclassified due to the impact of discrimination, while MetaCost changes the
labels of all the training examples. These approaches, however, do not guarantee that the
desired level of discrimination is reached as again, and they are local.

In Sampling Techniques for Unbalanced Datasets. [7], a synthetic minority over-sampling
technique (SMOTE) for two-class problems that over-sampled the minority class by creat-
ing synthetic examples rather than replicating examples is proposed. Chawla et al. [8] also
utilize a wrapper [16] approach to determine the percentage of minority class examples to
be added to the training set and the percentage to under-sample the majority class examples.
[17] present an innovative approach that augments the minority class by adding synthetic
points in distance spaces then use Support Vector Machines for classification. These sampling
methods show some similarity with our reweighing and sampling techniques; by increasing
the number of samples in one group (the minority class/the deprived community members
with a positive label), we try to increase the importance of this group such that the classifier
learned on the re-sampled dataset is forced to spend more attention to this group. Making
an error on this group will hence be reflected in more severe penalties than in the original
dataset, leading to a desired bias toward more easily assigning the minority class label or the
positive label to the discriminated group, respectively.

8 Discussion and conclusion

We have presented the classification with non-discrimination constraints problem. Three
approaches toward the problem, based upon pre-processing the training dataset, were
proposed: Massaging, Reweighing and Sampling. All approaches remove the discrimination
from the training data and subsequently a classifier is learned on this unbiased data. Exper-
imental evaluation shows that indeed these preprocessing approaches allow for removing
discrimination from the dataset more efficiently than simple methods such as, e.g., removing
the sensitive attribute from the training data. All methods have in common that to some extent
accuracy must be traded-off for lowering the discrimination. This trade-off was studied and
confirmed theoretically.

As future work we are interested in extending the discrimination model itself; in many
cases, the non-discrimination constraints as introduced in this paper are too strong: often it is
acceptable from an ethical and legal point of view to have a correlation between the gender
of a person and the label given to him or her, as long as it can be explained by other attributes.
Consider, e.g., the car insurance example: suppose that the number of male drivers involved
in two or more accidents in the past is significantly higher than the number of female drivers
with two or more accidents. In such a situation it is perfectly acceptable for a car insurance
broker to base his or her decisions on the number of previous accidents, even though this
will result in a higher number of men than women being denied from getting a car insurance.
This discrimination is acceptable because it can be explained by the attribute “Number of car
crashes in the past.” Similarly, using the attribute “Years of driving experience” may result
in acceptable age discrimination. Therefore, it would be interesting to refine our model to
Conditional non-discrimination Constraints. A promising direction could be to extend the
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work [19] where discriminated instances are identified by finding discrepancies in labeling
with its k nearest neighbors in the other community. For the definition of the distance function
we could incorporate the neutrality of certain attributes such as “Number of car crashes in
the past” by, e.g., giving them a higher weight.

Furthermore, in this paper, we restricted ourselves to a binary classification problem and
one binary sensitive attribute. We can extend our current settings to a multiple class prob-
lem by simply assuming one class as the desired class value and the rest of the class values
as the not-desired category and vice versa. Nevertheless, often there will be a more subtle
gradation in desirability between the classes that need to be taken into account as well. We
can handle a sensitive attribute with multiple values in a similar way by choosing some of the
values as defining the deprived community, yet again similar objections apply. It becomes
even more difficult when the discrimination problem has multiple sensitive attributes that can
be combined. For example, if we consider both gender and ethnicity as sensitive attributes
at the same time; such as, e.g., black females. In this case, black females may be deprived
while white females may be favored but overall there is discrimination toward females which
makes the problem more challenging to solve. As a last potential future extension we mention
numerical sensitive attributes; e.g., we want the outcome of a university admission procedure
to be independent of the gross income of the parents.

In conclusion, this paper only touches the tip of the iceberg. Much remains to be done
to extend the solutions to include more sensitive attributes, take into account explanatory
attributes, deal with numerical sensitive attributes, etc. We believe discrimination-aware
classification is a relevant and interesting research area with many open problems.
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